Activity of Cells in the Deeper Layers of the Superior Colliculus of the Rhesus Monkey: Evidence for a Gaze Displacement Command

Author:

Freedman Edward G.1,Sparks David L.12

Affiliation:

1. Institute of Neurological Sciences and the

2. Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104–6196

Abstract

Freedman, Edward G. and David L. Sparks. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. J. Neurophysiol. 78: 1669–1690, 1997. When the head is free to move, microstimulation of the primate superior colliculus (SC) evokes coordinated movements of the eyes and head. The similarity between these stimulation-induced movements and visually guided movements indicates that the SC of the primate is involved in redirecting the line of sight (gaze). To determine how movement commands are represented by individual collicular neurons, we recorded the activity of single cells in the deeper layers of the superior colliculus of the rhesus monkey during coordinated eye-head gaze shifts. Two alternative hypotheses were tested. The “separate channel” hypothesis states that two displacement commands are generated by the SC: one signal specifying the amplitude and direction of eye movements and a second signal specifying the amplitude and direction of head movements. Alternatively, a single gaze displacement command could be generated by the SC (“gaze displacement” hypothesis). The activity of collicular neurons was examined during three behavioral dissociations of gaze, eye, and head movement amplitude and direction (metrics). Subsets of trials were selected in which the amplitude and direction of either gaze shifts or eye movements or head movements were relatively constant but the metrics of the other two varied over wide ranges. Under these conditions, the separate channel and gaze displacement hypotheses make differential predictions about the patterns of SC activity. We tested these differential predictions by comparing observed patterns with predicted patterns of neuronal activity. We obtained data consistent with the predictions of the gaze displacement hypothesis. The predictions of the separate channel hypothesis were not confirmed. Thus microstimulation data, single-unit recording data, and behavioral data are all consistent with the gaze displacement hypothesis of collicular function—the hypothesis that a gaze displacement signal is derived from the locus of activity within the motor map of the SC and subsequently is decomposed into separate eye and head displacement signals downstream from the colliculus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3