Affiliation:
1. Department of Zoology and Physiology, Louisiana State University, Baton Rouge, Louisiana 70803-1725
Abstract
Kang, Jiesheng and John Caprio. In vivo response of single olfactory receptor neurons of channel catfish to binary mixtures of amino acids. J. Neurophysiol. 77: 1–8, 1997. For the first time in any vertebrate, in vivo responses of single olfactory receptor neurons to odorant mixtures were studied quantitatively. Extracellular electrophysiological response of 54 single olfactory receptor neurons from 23 channel catfish, Ictalurus punctatus, to binary mixtures of amino acids and to their components were recorded simultaneously with the electroolfactogram (EOG). For 57% (73 of 128) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 55 tests of binary mixtures were excitatory (E; 13%) or suppressive (S; 30%). No response type was associated with any specific mixture across the neurons sampled. Eighty-six percent of the responses of catfish olfactory receptor neurons to binary mixtures were classifed similar to at least one of the component responses, a percentage comparable (i.e., 89%) with that observed for single olfactory bulb neurons in the same species to equivalent binary mixtures. The responses of single olfactory receptor neurons to component-similar binary mixtures (i.e., component responses were both E, both S, and both N, respectively) were generally (80% of 59 tests) classified similar to the responses to the components. For E+N and S+N binary mixtures, the N component often (66% of 58 tests) reduced or concealed (i.e., “masked”) the excitatory and suppressive responses, respectively. For the majority (6 of 11 tests) of E+S binary mixtures, null activity resulted. Responses to the remaining five tests were either excitatory ( n = 3) or suppressive ( n = 2).
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献