Physiological Evidence for Local Excitatory Synaptic Circuits in the Rat Hypothalamus

Author:

Boudaba Cherif1,Schrader Laura A.2,Tasker Jeffrey G.12

Affiliation:

1. Department of Cell and Molecular Biology and

2. Neuroscience Graduate Program, Tulane University, New Orleans, Louisiana 70118

Abstract

Boudaba, Cherif, Laura A. Schrader, and Jeffrey G. Tasker. Physiological evidence for local excitatory synaptic circuits in the rat hypothalamus. J. Neurophysiol. 77: 3396–3400, 1997. We conducted whole cell voltage-clamp and current-clamp recordings in slices of rat hypothalamus to test for local excitatory synaptic circuits. Local excitatory inputs to neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) were studied with the use of electrical and chemical stimulation. Extracellular electrical stimulation provided indirect evidence of local excitatory circuits. Single stimuli evoked multiple excitatory postsynaptic potentials (EPSPs) or excitatory postsynaptic currents (EPSCs) in some PVN and SON cells, invoking polysynaptic excitatory inputs. Repetitive stimulation (10–20 Hz, 2–10 s) elicited long afterdischarges of EPSPs/EPSCs, suggesting a potentiation of upstream synapses in a polysynaptic circuit. Bath application of metabotropic glutamate receptor agonists provided more conclusive evidence for local excitatory circuits. Metabotropic receptor activation caused an increase in the frequency of EPSPs/EPSCs that was blocked by tetrodotoxin, suggesting that it was mediated by activation of local presynaptic excitatory neurons. The local excitatory inputs to SON and PVN neurons were mediated by glutamate release, because the EPSPs/EPSCs elicited with electrical stimulation and metabotropic receptor activation were blocked by ionotropic glutamate receptor antagonists. Finally, glutamate microstimulation furnished the most direct demonstration of local excitatory synaptic circuits. Glutamate microstimulation of perinuclear sites elicited an increase in the frequency of EPSPs/EPSCs in 13% of the PVN and SON neurons tested. Two sites provided most of the local excitatory synaptic inputs to PVN neurons, the dorsomedial hypothalamus and the perifornical region. These experiments provide converging physiological evidence for local excitatory synaptic inputs to hypothalamic neurons, inputs that may play a role in pulsatile hormone release.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3