The Motor System Does Not Learn the Dynamics of the Arm by Rote Memorization of Past Experience

Author:

Conditt Michael A.1,Gandolfo Francesca1,Mussa-Ivaldi Ferdinando A.1

Affiliation:

1. Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Northwestern University, Chicago, Illinois 60611; and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Conditt, Michael A., Francesca Gandolfo, and Ferdinando A. Mussa-Ivaldi. The motor system does not learn the dynamics of the arm by rote memorization of past experience. J. Neurophysiol. 78: 554–560, 1997. The purpose of this study was to investigate the learning mechanisms underlying motor adaptation of arm movements to externally applied perturbing forces. We considered two alternative hypotheses. According to one, adaptation occurs through the learning of a mapping between the states (positions and velocities) visited by the arm and the forces experienced at those states. The alternative hypothesis is that adaptation occurs through the memorization of the temporal sequence of forces experienced along specific trajectories. The first mechanism corresponds to developing a model of the dynamics of the environment, whereas the second is a form of “rote learning.” Both types of learning would lead to the recovery of the unperturbed performance. We have tested these hypotheses by examining how adaptation is transferred across different types of movements. Our results indicate that 1) adaptation to an externally applied force field occurs with different classes of movements including but not limited to reaching movements and 2) adaptation generalizes across different movements that visit the same regions of the external field. These findings are not compatible with the hypothesis of rote learning. Instead, they are consistent with the hypothesis that adaptation to changes in movement dynamics is achieved by a module that learns to reproduce the structure of the environmental field as an association between visited states and experienced forces, independent of the kinematics of the movements made during adaptation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 282 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3