Neural Tuning to Sound Duration in the Inferior Colliculus of the Big Brown Bat, Eptesicus fuscus

Author:

Ehrlich Daphna1,Casseday John H.1,Covey Ellen1

Affiliation:

1. Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710

Abstract

Ehrlich, Daphna, John H. Casseday, and Ellen Covey. Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J. Neurophysiol. 77: 2360–2372, 1997. Neural tuning to different sound durations may be a useful filter for identification of certain sounds, especially those that are biologically important. The auditory midbrains of mammals and amphibians contain neurons that appear to be tuned to sound duration. In amphibians, neurons are tuned to durations of sound that are biologically important. The purpose of this study was to characterize responses of neurons in the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus, to sounds of different durations. Our aims were to determine what percent of neurons are duration tuned and how best durations are correlated to durations of echolocation calls, and to examine response properties that may be relevant to the mechanism for duration tuning, such as latency and temporal firing pattern; we also examined frequency tuning and rate-level functions. We recorded from 136 single units in the central nucleus of the IC of unanesthetized bats. The stimuli were pure tones, frequency-modulated sweeps, and broadband noise. The criterion for duration tuning was an increase in spike count of ≥50% at some durations compared with others. Of the total units sampled, 36% were tuned to stimulus duration. All of these units were located in the caudal half of the IC. Best duration for most units ranged from <1 to 10 ms, but a few had best durations up to ≥20 ms. This range is similar to the range of durations of echolocation calls used by Eptesicus. All duration-tuned neurons responded transiently. The minimum latency was always longer than the best duration. Duration-tuned units have best durations and best frequencies that match the temporal structure and frequency range of the echolocation calls. Thus the results raise the hypothesis that neurons in the IC of Eptesicus, and probably the auditory midbrain of other vertebrates, are tuned to biologically important sound durations. We suggest a model for duration tuning consisting of three components: 1) inhibitory input that is correlated with the onset of the stimulus and is sustained for the stimulus duration; 2) transient excitation that is correlated with the offset of the stimulus; and 3) transient excitation that is correlated with the onset of the stimulus but is delayed in time relative to the onset of inhibition. For the neuron to fire, the two excitatory events must coincide in time; noncoincident excitatory events are not sufficient.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3