Affiliation:
1. Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, Ohio
Abstract
When stimulated with odorants, olfactory receptor neurons (ORNs) produce a depolarizing receptor current. In isolated ORNs, much of this current is caused by an efflux of Cl−. This implies that the neurons have one or more mechanisms for accumulating cytoplasmic Cl− at rest. Whether odors activate an efflux of Cl− in intact olfactory epithelium, where the ionic environment is poorly characterized, has not been previously determined. In mouse olfactory epithelium, we found that >80% of the summated electrical response to odors is blocked by niflumic acid or flufenamic acid, each of which inhibits Ca2+-activated Cl− channels in ORNs. This indicates that ORNs accumulate Cl− in situ. Recent evidence has shown that NKCC1, a Na+-K+-2Cl− cotransporter, contributes to Cl− accumulation in mammalian ORNs. However, we find that the epithelial response to odors is only reduced by 39% in mice carrying a null mutation in Nkcc1. As in the wild-type, most of the response is blocked by niflumic acid or flufenamic acid, indicating that the underlying current is carried by Cl−. We conclude that ORNs effectively accumulate Cl− in situ even in the absence of NKCC1. The Cl−-transport mechanism underlying this accumulation has not yet been identified.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献