Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance

Author:

Traschütz Andreas1,Kreiter Andreas K.1,Wegener Detlef1

Affiliation:

1. Brain Research Institute, Center for Cognitive Science, University of Bremen, Bremen, Germany

Abstract

Neurons in the middle temporal area (MT) respond to motion onsets and speed changes with a transient-sustained firing pattern. The latency of the transient response has recently been shown to correlate with reaction time in a speed change detection task, but it is not known how the sign, the amplitude, and the latency of this response depend on the sign and the magnitude of a speed change, and whether these transients can be decoded to explain speed change detection behavior. To investigate this issue, we measured the neuronal representation of a wide range of positive and negative speed changes in area MT of fixating macaques and obtained three major findings. First, speed change transients not only reflect a neuron's absolute speed tuning but are shaped by an additional gain that scales the tuned response according to the magnitude of a relative speed change. Second, by means of a threshold model positive and negative population transients of a moderate number of MT neurons explain detection of both positive and negative speed changes, respectively, at a level comparable to human detection rates under identical visual stimulation. Third, like reaction times in a psychophysical model of velocity detection, speed change response latencies follow a power-law function of the absolute difference of a speed change. Both this neuronal representation and its close correlation with behavioral measures of speed change detection suggest that neuronal transients in area MT facilitate the detection of rapid changes in visual input.

Funder

Deutsche Forschungsgemeinschaft (DFG)

Studienstiftung des Deutschen Volkes (Studienstiftung)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3