Cycle Period of a Network Oscillator Is Independent of Membrane Potential and Spiking Activity in Individual Central Pattern Generator Neurons

Author:

Katz Paul S.1,Sakurai Akira1,Clemens Stefan1,Davis Deron1

Affiliation:

1. Department of Biology, Georgia State University, Atlanta, Georgia 30303-3088

Abstract

Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altered by changing the resting membrane potential or the level of spiking activity of any of the 3 known CPG cell types: ventral swim interneuron-B (VSI-B), the dorsal swim interneurons (DSIs), and cerebral neuron 2 (C2). Furthermore, tonic firing in one or more DSIs or C2 evoked rhythmic bursting that did not differ from the cycle period of the motor pattern evoked by nerve stimulation, regardless of the firing frequency. In contrast, the CPG produced a large range of cycle periods as a function of temperature. The temperature sensitivity of the fictive motor pattern produced by the isolated nervous system was similar to the temperature sensitivity of the swimming behavior produced by the intact animal. Thus, although the CPG is capable of producing a wide range of cycle periods under the influence of temperature, the membrane potentials and spiking activity of the identified CPG neurons do not determine the periodicity of the motor pattern. This suggests that the timing of activity in this network oscillator may be determined by a mechanism that is independent of the membrane potentials and spike rate of its constituent neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference50 articles.

1. Analysis of the Central Pattern Generator for Swimming in the Mollusk Clionea

2. Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus

3. Benson JAand Adams WB.The control of rhythmic neuronal firing. In:Neuromodulation: The Biochemical Control of Neuronal Excitability, edited by LK Kaczmarek and IB Levitan. New York: Oxford Univ. Press, 1987, p. 100–118.

4. Identified neurons and leech swimming behavior

5. Oscillation in motor pattern-generating networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3