Calcium Waves and Closure of Potassium Channels in Response to GABA Stimulation in Hermissenda Type B Photoreceptors

Author:

Blackwell K. T.1

Affiliation:

1. School of Computational Sciences and the Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030

Abstract

Classical conditioning of Hermissenda crassicornisrequires the paired presentation of a conditioned stimulus (light) and an unconditioned stimulus (turbulence). Light stimulation of photoreceptors leads to production of diacylglycerol, an activator of protein kinase C, and inositol triphosphate (IP3), which releases calcium from intracellular stores. Turbulence causes hair cells to release GABA onto the terminal branches of the type B photoreceptor. One prior study has shown that GABA stimulation produces a wave of calcium that propagates from the terminal branches to the soma and raises the possibility that two sources of calcium are required for memory storage. GABA stimulation also causes an inhibitory postsynaptic potential (IPSP) followed by a late depolarization and increase in input resistance, whose cause has not been identified. A model was developed of the effect of GABA stimulation on the Hermissenda type B photoreceptor to evaluate the currents underlying the late depolarization and to evaluate whether a calcium wave could propagate from the terminal branches to the soma. The model included GABAA, GABAB, and calcium-sensitive potassium leak channels; calcium dynamics including release of calcium from intracellular stores; and the biochemical reactions leading from GABAB receptor activation to IP3 production. Simulations show that it is possible for a wave of calcium to propagate from the terminal branches to the soma. The wave is initiated by IP3-induced calcium release but propagation requires release through the ryanodine receptor channel where IP3 concentration is small. Wave speed is proportional to peak calcium concentration at the crest of the wave, with a minimum speed of 9 μm/s in the absence of IP3. Propagation ceases when peak concentration drops below 1.2 μM; this occurs if the rate of calcium pumping into the endoplasmic reticulum is too large. Simulations also show that both a late depolarization and an increase in input resistance occur after GABA stimulation. The duration of the late depolarization corresponds to the duration of potassium leak channel closure. Neither the late depolarization nor the increase in input resistance are observed when a transient calcium current and a hyperpolarization-activated current are added to the model as replacement for closure of potassium leak channels. Thus the late depolarization and input resistance elevation can be explained by a closure of calcium-sensitive leak potassium currents but cannot be explained by a transient calcium current and a hyperpolarization-activated current.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3