Dopamine neurons encode errors in predicting movement trigger occurrence

Author:

Pasquereau Benjamin1,Turner Robert S.1

Affiliation:

1. Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

The capacity to anticipate the timing of events in a dynamic environment allows us to optimize the processes necessary for perceiving, attending to, and responding to them. Such anticipation requires neuronal mechanisms that track the passage of time and use this representation, combined with prior experience, to estimate the likelihood that an event will occur (i.e., the event's “hazard rate”). Although hazard-like ramps in activity have been observed in several cortical areas in preparation for movement, it remains unclear how such time-dependent probabilities are estimated to optimize response performance. We studied the spiking activity of dopamine neurons in the substantia nigra pars compacta of monkeys during an arm-reaching task for which the foreperiod preceding the “go” signal varied randomly along a uniform distribution. After extended training, the monkeys' reaction times correlated inversely with foreperiod duration, reflecting a progressive anticipation of the go signal according to its hazard rate. Many dopamine neurons modulated their firing rates as predicted by a succession of hazard-related prediction errors. First, as time passed during the foreperiod, slowly decreasing anticipatory activity tracked the elapsed time as if encoding negative prediction errors. Then, when the go signal appeared, a phasic response encoded the temporal unpredictability of the event, consistent with a positive prediction error. Neither the anticipatory nor the phasic signals were affected by the anticipated magnitudes of future reward or effort, or by parameters of the subsequent movement. These results are consistent with the notion that dopamine neurons encode hazard-related prediction errors independently of other information.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3