Effect of Adrenalectomy on Miniature Inhibitory Postsynaptic Currents in the Paraventricular Nucleus of the Hypothalamus

Author:

Verkuyl J. M.1,Joëls M.1

Affiliation:

1. Section of Neurobiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands

Abstract

Within the rat paraventricular nucleus of the hypothalamus two types of neurons have been distinguished based on morphological appearance, i.e., parvocellular and magnocellular neurons. The parvocellular neurons play a key role in regulating the activity of the hypothalamo–pituitary–adrenal axis, which is activated, e.g., after stress exposure. These neurons receive humoral negative feedback via the adrenal hormone corticosterone but also neuronal inhibitory input, either directly or transsynaptically relayed via GABAergic interneurons. In the present study we examined to what extent the neuronal GABAergic input is influenced by the humoral signal. To this end, miniature inhibitory postsynaptic currents (mIPSCs) were recorded in parvo- and magnocellular neurons of adrenalectomized rats, which lack corticosterone, and in sham-operated controls. Under visual control neurons in coronal slices containing the paraventricular nucleus were designated as putative parvocellular or magnocellular neurons: the former were located in the medial part of the nucleus and displayed a small fusiform soma; the latter were mostly located in the lateral part and were recognized by their large round soma. Compared with putative magnocellular neurons, parvocellular neurons generally exhibited a lower membrane capacitance, lower mIPSC frequency, and smaller mIPSC amplitude. Following adrenalectomy, the mIPSC frequency was significantly enhanced in parvo- but not magnocellular neurons. Other properties of the cells were not affected. In a second series of experiments we examined whether the increase in mIPSC frequency was due to the absence of corticosterone or caused by other effects related to adrenalectomy. The data support the former explanation since implantation of a corticosterone releasing pellet after adrenalectomy fully prevented the change in mIPSC frequency. We conclude that, in the absence of humoral negative feedback, local GABAergic input of parvocellular neurons in the paraventricular nucleus is enhanced. This may provide a compensatory mechanism necessary for maintaining controllable network activity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3