Affiliation:
1. Computer Science Department, Technion - Israel Institute of Technology, Haifa, Israel
Abstract
The elementary set, or alphabet, of neural firing modes is derived from the widely accepted conductance-based rectified firing-rate model. The firing dynamics of interacting neurons are shown to be governed by a multidimensional bilinear threshold discrete iteration map. The parameter-dependent global attractors of the map morph into 12 attractor types. Consistent with the dynamic modes observed in biological neuronal firing, the global attractor alphabet is highly visual and intuitive in the scalar, single-neuron case. As synapse permeability varies from high depression to high potentiation, the global attractor type varies from chaotic to multiplexed, oscillatory, fixed, and saturated. As membrane permeability decreases, the global attractor transforms from active to passive state. Under the same activation, learning and retrieval end at the same global attractor. The bilinear threshold structure of the multidimensional map associated with interacting neurons generalizes the global attractor alphabet of neuronal firing modes to multineuron systems. Selective positive or negative activation and neural interaction yield combinatorial revelation and concealment of stored neuronal global attractors.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献