Changes in mIPSCs and sIPSCs After Kainate Treatment: Evidence for Loss of Inhibitory Input to Dentate Granule Cells and Possible Compensatory Responses

Author:

Shao Li-Rong,Dudek F. Edward

Abstract

How inhibition is altered after status epilepticus and the role of inhibition during epileptogenesis remain unsettled issues. The present study examined acute (4–7 days) and chronic (>3 mo) changes of GABAA receptor-mediated inhibitory synaptic input to dentate granule cells after kainate-induced status epilepticus. Whole cell patch-clamp techniques were used to record spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in the presence of 6,7-dinitroquinoxaline-2,3-dione and dl-2-amino-5-phosphonopentanoic acid to block glutamatergic excitatory synaptic transmission. In both groups, mean sIPSC frequency of dentate granule cells from the saline- and kainate-treated rats was not significantly different. However, mIPSC frequency from the kainate-treated rats of both groups was ∼30% lower than that of the respective saline controls. The mean amplitude of sIPSCs and mIPSCs from kainate-treated rats was not reduced in either the acute or chronic groups. The mean 10–90% rise time of IPSCs was not altered in kainate-treated rats, but the decay time constant was slightly longer than in controls, and the charge transfer 4–7 days after kainate treatment was significantly larger. The similar reduction of mIPSC frequency (i.e., ∼30%) in the two groups of kainate-treated rats suggests a decreased inhibitory input to dentate granule cells (presumably due to a partial loss of inhibitory interneurons that innervate them) without recovery during epileptogenesis. The lack of effect on sIPSC frequency and the decreased mIPSC frequency in both groups suggests a possible compensatory increase in firing rate of interneurons, which may involve a hypothetical reduction of inhibitory input to the remaining interneurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3