Author:
Shao Li-Rong,Dudek F. Edward
Abstract
How inhibition is altered after status epilepticus and the role of inhibition during epileptogenesis remain unsettled issues. The present study examined acute (4–7 days) and chronic (>3 mo) changes of GABAA receptor-mediated inhibitory synaptic input to dentate granule cells after kainate-induced status epilepticus. Whole cell patch-clamp techniques were used to record spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in the presence of 6,7-dinitroquinoxaline-2,3-dione and dl-2-amino-5-phosphonopentanoic acid to block glutamatergic excitatory synaptic transmission. In both groups, mean sIPSC frequency of dentate granule cells from the saline- and kainate-treated rats was not significantly different. However, mIPSC frequency from the kainate-treated rats of both groups was ∼30% lower than that of the respective saline controls. The mean amplitude of sIPSCs and mIPSCs from kainate-treated rats was not reduced in either the acute or chronic groups. The mean 10–90% rise time of IPSCs was not altered in kainate-treated rats, but the decay time constant was slightly longer than in controls, and the charge transfer 4–7 days after kainate treatment was significantly larger. The similar reduction of mIPSC frequency (i.e., ∼30%) in the two groups of kainate-treated rats suggests a decreased inhibitory input to dentate granule cells (presumably due to a partial loss of inhibitory interneurons that innervate them) without recovery during epileptogenesis. The lack of effect on sIPSC frequency and the decreased mIPSC frequency in both groups suggests a possible compensatory increase in firing rate of interneurons, which may involve a hypothetical reduction of inhibitory input to the remaining interneurons.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献