Self-motion trajectories can facilitate orientation-based figure-ground segregation

Author:

Dutta Arkadeb1,Lev-Ari Tidhar1ORCID,Barzilay Ouriel2,Mairon Rotem3,Wolf Alon2,Ben-Shahar Ohad34,Gutfreund Yoram1

Affiliation:

1. The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel

2. Faculty of Mechanical Engineering, The Technion, Haifa, Israel

3. Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

4. The Zlotowski Center for Neuroscience Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

Segregation of objects from the background is a basic and essential property of the visual system. We studied the neural detection of objects defined by orientation difference from background in barn owls ( Tyto alba). We presented wide-field displays of densely packed stripes with a dominant orientation. Visual objects were created by orienting a circular patch differently from the background. In head-fixed conditions, neurons in both tecto- and thalamofugal visual pathways (optic tectum and visual Wulst) were weakly responsive to these objects in their receptive fields. However, notably, in freely viewing conditions, barn owls occasionally perform peculiar side-to-side head motions (peering) when scanning the environment. In the second part of the study we thus recorded the neural response from head-fixed owls while the visual displays replicated the peering conditions; i.e., the displays (objects and backgrounds) were shifted along trajectories that induced a retinal motion identical to sampled peering motions during viewing of a static object. These conditions induced dramatic neural responses to the objects, in the very same neurons that where unresponsive to the objects in static displays. By reverting to circular motions of the display, we show that the pattern of the neural response is mostly shaped by the orientation of the background relative to motion and not the orientation of the object. Thus our findings provide evidence that peering and/or other self-motions can facilitate orientation-based figure-ground segregation through interaction with inhibition from the surround. NEW & NOTEWORTHY Animals frequently move their sensory organs and thereby create motion cues that can enhance object segregation from background. We address a special example of such active sensing, in barn owls. When scanning the environment, barn owls occasionally perform small-amplitude side-to-side head movements called peering. We show that the visual outcome of such peering movements elicit neural detection of objects that are rotated from the dominant orientation of the background scene and which are otherwise mostly undetected. These results suggest a novel role for self-motions in sensing objects that break the regular orientation of elements in the scene.

Funder

Israel Science Foundation

Edward S Mueller Eye Research Foundation

Adelis Foundation

Rappaport Institute for Biomedical Research

Frunkel Fund

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3