Natural Neural Output That Produces Highly Variable Locomotory Movements

Author:

Hooper Scott L.,Guschlbauer Christoph,von Uckermann Géraldine,Büschges Ansgar

Abstract

We recorded fast extensor tibiae motor neuron activity during single-legged treadmill walking in the stick insect, Carausius morosus. We used this activity to stimulate the extensor muscle motor nerve, observed the resulting extensor muscle contractions under isotonic conditions, and quantified these contractions with a variety of measures. Extensor contractions induced in this manner were highly variable, with contraction measures having SDs of 12 to 51%, and ranges of 82 to 275%, when expressed as percentages of the means, an unexpectedly wide range for a locomotory pattern. Searches for correlations among the contraction measures showed that, in general, this high variability is not reduced by contraction measure covariation. Comparing responses (to identical input) across animals showed that extensor muscles from different animals generally significantly differed from one another. However, correlation analyses on these data suggested that these differences do not indicate that multiple extensor muscle subtypes exist. Extensor muscles instead appear to belong to a single class, albeit one with high animal to animal variability. These data thus provide another well-quantified example (along with Aplysia feeding) of a repetitive but highly variable motor pattern (in contrast to the high rhythmicity and stereotypy present in most other well-quantified repetitive motor patterns). We suggest this high variability could be an adaptive combination of locomotion, active sensing, and crypsis arising from the relatively low demand for locomotion in Carausius behavior, the highly fragmented environment the animal inhabits, and its need to avoid predatory attention.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3