Contrasting roles of inertial and muscle moments at knee and ankle during paw-shake response

Author:

Hoy M. G.,Zernicke R. F.,Smith J. L.

Abstract

Intralimb kinetics of the paw-shake response (PSR) were studied in four spinal, adult cats. Using rigid body equations of motion to determine the dynamic interactions between limb segments, knee and ankle joint kinetics were calculated for the steady-state cycles as defined in the preceding paper. Hindlimb motion was filmed (200 frames/s) to obtain knee and ankle kinematics. Responses of flexors and extensors at both joints were recorded synchronously with cinefilm. Ankle and knee joint kinematics were determined from 51 steady-state cycles of 16 PSRs. Average maximum displacements, velocities, and accelerations were substantially greater for the ankle than for the knee joint. Knee and ankle motions were out of phase in the first part of the cycle; knee extension occurred simultaneously with ankle flexion. In the second part of the cycle, motions at the two joints were sequential; rapid knee flexion, accompanied by negligible ankle displacement, preceded rapid ankle extension with minimal knee displacement. At the ankle joint, peak net moments tending to cause flexion and extension were similar in magnitude and determined primarily by muscle moments. Moments due to leg angular acceleration contributed significantly to an extensor peak in the net moment near the end of the cycle. Other inertial and gravitational moments were small. At the knee joint, net moments tending to cause flexion and extension were also similar, but smaller than those at the ankle. The knee muscle moments, however, were large and counteracted large inertial moments due to paw angular acceleration. Also, moments due to leg angular acceleration and knee linear acceleration were substantial and opposite in effect. Other inertial and the gravitational moments were negligible. Muscle moments slowed and reversed joint motions, and active muscle force components of muscle moments were derived from lengthening of active musculotendinous units. Segmental interactions, in which proximal segment motion augmented distal segment velocity, increased the effectiveness of PSR steady-state cycles by facilitating the generation of extremely large paw linear accelerations. Limb oscillations during PSR steady-state result from interactions between muscle synergies and motion-dependent limb dynamics. At the ankle, muscle activity functioned to control paw acceleration, whereas at the knee, muscle activity functioned to control leg and paw inertial interactions.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3