Reflex control of dynamic muscle stiffness in a slow crustacean muscle

Author:

Chapple W. D.

Abstract

The properties of a stretch reflex in the ventral superficial muscle of the hermit crab abdomen were studied in an isolated abdominal preparation to determine how the reflex affects the mechanical properties of the muscle and whether the reflex is controlling length, force, or stiffness. The reflex was elicited by stretch of hypodermal mechanoreceptors in the cuticle and resulted in the activation of excitor motoneurons to both circular and longitudinal layers of the muscle, thus stiffening the abdomen. The medial motoneuron of the longitudinal layer of the right fourth segment was selected for detailed analysis. It was tonically active and responded to stretch with a phasic burst having a latency of 100 ms. Reflex muscle tension began to increase at 130 ms and reached a peak at 300 ms. Reflex-burst frequency increased slightly with stretch amplitude. Peak force was an approximately linear function of stretch amplitude. No tonic component to the reflex was found in the medial motoneuron, in the central motoneuron (the smallest excitor to the muscle), or in the medial motoneuron studied in intact animals. The reflex-burst frequency was a function of stretch velocity, increasing between two and one-half to four times for a 10-fold increase in stretch velocity. Peak force was essentially independent of stretch velocity over this range. The reflex-burst frequency was not a function of the initial length of the muscle on the ascending limb of the length-tension relation. Active peak force (between two and three times passive peak force) was relatively constant over this range. The dynamic active stiffness (the resistance to stretch of the muscle when the nervous system was intact) was separated into two components. One component is that due to the tonic frequency of the motoneurons, the other to the reflex burst. The reflex component makes up a substantial part of the total active stiffness. Dynamic active stiffness is relatively constant under the conditions of these experiments and, when normalized, is similar to that observed in mammalian myotatic reflexes. This constancy, however, cannot be due to negative feedback control of stiffness, as in mammals. It is suggested that constant reflex stiffness arises from the combination of the low-pass filter characteristics of the muscle and the high-pass filter characteristics of the reflex over a restricted range of velocities.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3