Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos

Author:

Roberts A.,Dale N.,Evoy W. H.,Soffe S. R.

Abstract

Embryos spinalized at the 3rd to 6th postotic myotome and immobilized in 10(-4) M tubocurarine can respond to a brief skin stimulus with motor root activity suitable for swimming. Embryos spinalized at the more caudal levels give shorter episodes of fictive swimming. We have previously described the synaptic inputs to motoneurons during fictive swimming in intact embryos (23). In the present paper we look to see if similar synaptic inputs are present in spinal embryos and are therefore spinal in origin. All motoneuron firing during fictive swimming is associated with a tonic depolarization that falls away slowly once firing stops, is increased by hyperpolarizing current, and is reduced by depolarizing current. A slow depolarizing potential evoked by lower levels of skin stimulation has similar properties and rate of fall. In 1-2 mM PDA, an excitatory amino acid antagonist, only a small remnant of the depolarization remains, and motoneuron firing stops. The NMDA antagonist 50 microM APV reduces the depolarization less but also blocks firing. Motoneurons fire one spike per swimming cycle, in phase with nearby motor root discharge. Spikes are preceded by a depolarizing prepotential. This increases with hyperpolarizing current, which can block the spike to reveal an underlying depolarizing potential. In phase with motor root discharge on the opposite side of the body, motoneurons receive a midcycle inhibitory postsynaptic potential, which increases with depolarizing current, decreases with hyperpolarizing current, and is blocked by 10(-6) M strychnine. Strychnine, 5 X 10(-7) M, leads first to broadening of motor root bursts then to loss of the alternating swimming pattern of activity, which is replaced by synchronous bursts on both sides of the body. We conclude that the synaptic inputs to motoneurons during fictive swimming in spinal embryos are very similar in properties and pharmacology to those in intact embryos. These inputs, including the tonic depolarization always associated with motoneuron firing during swimming, must be at least partly spinal in origin.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3