Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns

Author:

Robertson G. A.,Mortin L. I.,Keifer J.,Stein P. S.

Abstract

A turtle with a complete transection of the spinal cord, termed a spinal turtle, exhibits three types or “forms” of the scratch reflex: the rostral scratch, pocket scratch, and caudal scratch (21). Each scratch form is elicited by tactile stimulation of a site on the body surface innervated by afferents entering the spinal cord caudal to the transection. We recorded electromyographic (EMG) potentials from the hindlimb during each of the three forms of the scratch in the spinal turtle (see Fig. 1). Common to all scratch forms is the rhythmic alternation of the activity of the hip protractor muscle (VP-HP) and hip retractor muscle (HR-KF). Each form of the scratch displays a characteristic timing of the activity of the knee extensor muscle (FT-KE) with respect to the cycle of activity of the hip muscles VP-HP and HR-KF. In a rostral scratch, activation of FT-KE occurs during the latter portion of VP-HP activation. In a pocket scratch, activation of FT-KE occurs during HR-KF activation. In a caudal scratch, activation of FT-KE occurs after the cessation of HR-KF activation. The timing characteristics of these muscle activity patterns correspond to the timing characteristics of changes in the angles of the knee joint and the hip joint obtained with movement analyses (21). We recorded electroneurographic (ENG) potentials from peripheral nerves of the hindlimb during each of the three forms of the “fictive” scratch in the spinal turtle immobilized with neuromuscular blockade (see Fig. 4). Common to all forms of the fictive scratch is the rhythmic alternation of the activity of hip protractor motor neurons (VP-HP) and hip retractor motor neurons (HR-KF). Each form displays a characteristic timing of the activity of knee extensor motor neurons (FT-KE) with respect to the cycle of VP-HP and HR-KF motor neuron activity. The timing characteristics of these motor neuron activity patterns are similar to the timing characteristics of the muscle activity patterns obtained in the preparation with movement (cf. Figs. 1 and 4). The motor pattern for each scratch form is generated centrally within the spinal cord. In the spinal immobilized preparation, neuromuscular blockade prevents both limb movement and phasic sensory input, and complete spinal transection isolates the cord from supraspinal input.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3