Inhibition and level-tolerant frequency tuning in the auditory cortex of the mustached bat

Author:

Suga N.,Tsuzuki K.

Abstract

For echolocation the mustached bat, Pteronotus parnellii, emits complex orientation sounds (pulses), each consisting of four harmonics with long constant-frequency components (CF1-4) followed by short frequency-modulated components (FM1-4). The CF signals are best suited for target detection and measurement of target velocity. The CF/CF area of the auditory cortex of this species contains neurons sensitive to pulse-echo pairs. These CF/CF combination-sensitive neurons extract velocity information from Doppler-shifted echoes. In this study we electrophysiologically investigated the frequency tuning of CF/CF neurons for excitation, facilitation, and inhibition. CF1/CF2 and CF1/CF3 combination-sensitive neurons responded poorly to individual signal elements in pulse-echo pairs but showed strong facilitation of responses to pulse-echo pairs. The essential components in the pairs were CF1 of the pulse and CF2 or CF3 of the echo. In 68% of CF/CF neurons, the frequency-tuning curves for facilitation were extremely sharp for CF2 or CF3 and were "level-tolerant" so that the bandwidths of the tuning curves were less than 5.0% of best frequencies even at high stimulus levels. Facilitative tuning curves for CF1 were level tolerant only in 6% of the neurons studied. CF/CF neurons were specialized for fine analysis of the frequency relationship between two CF sounds regardless of sound pressure levels. Some CF/CF neurons responded to single-tone stimuli. Frequency-tuning curves for excitation (responses to single-tone stimuli) were extremely sharp and level tolerant for CF2 or CF3 in 59% of CF1/CF2 neurons and 70% of CF1/CF3 neurons. Tuning to CF1 was level tolerant in only 9% of these neurons. Sharp level-tolerant tuning may be the neural basis for small difference limens in frequency at high stimulus levels. Sharp level-tolerant tuning curves were sandwiched between broad inhibitory areas. Best frequencies for inhibition were slightly higher or lower than the best frequencies for facilitation and excitation. We thus conclude that sharp level-tolerant tuning curves are produced by inhibition. The extent to which neural sharpening occurred differed among groups of neurons tuned to different frequencies. The more important the frequency analysis of a particular component in biosonar signals, the more pronounced the neural sharpening. This was in addition to the peripheral specialization for fine frequency analysis of that component. The difference in bandwidth or quality factor between the excitatory tuning curves of peripheral neurons and the facilitative and excitatory tuning curves of CF/CF neurons was larger at higher stimulus levels.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3