Cervicocollic reflex: its dynamic properties and interaction with vestibular reflexes

Author:

Peterson B. W.,Goldberg J.,Bilotto G.,Fuller J. H.

Abstract

Electromyographic activity of dorsal neck muscles elicited by sinusoidal rotations of the body and head was studied in decerebrate cats over a wide range of rotational frequencies and amplitudes. Rotation of the body with the head held fixed in space elicited a cervicocollic reflex (CCR) in the biventer cervicis, complexus, obliquus capitis inferior, rectus capitis major, and splenius muscles. As stimulus amplitude increased, CCR amplitude increased first rapidly and then more slowly, displaying two linear incremental sensitivity ranges. In contrast, the vestibulocollic reflex (VCR) elicited by whole body rotation had a minimum stimulus threshold below which no response was observed, whereas the vestibuloocular reflex (VOR) saturated at intermediate stimulus intensities. When stimulus frequency was varied, the CCR exhibited second-order dynamic behavior. At frequencies below 0.5 Hz, muscle EMG activation was in phase with peak platform angular deviation in the direction that stretched the muscle, and the gain measured as the percent modulation of EMG activity per degree of rotation remained constant. As frequency increased to 3-4 Hz, response phase advanced by 120 deg or more and gain increased with a slope approaching 40 dB/decade. The data were well-fitted by second-order transfer functions containing two zeros. Both the dynamic behavior of the CCR and its high sensitivity to small stimuli resemble the properties of muscle spindle primary afferents, suggesting that the latter may provide the major input responsible for the CCR. Dynamic properties and gains of the CCR and VCR were quite similar at frequencies between 0.2 and 3-4 Hz. Transfer functions of both reflexes contained two zeros whose time constants were correlated in a population of 11 cats, suggesting that reflex dynamics may be matched to the mechanical properties of each animal's head-neck system. Interaction of the CCR and VCR was studied under two conditions. When the head was driven by a servomotor while the body remained stationary, EMG activation by the two reflexes added linearly to produce a large response. When the body was rotated with the head allowed to counterrotate about the C1-C2 joint, the two reflexes combined linearly in an antagonistic fashion: the CCR acted to oppose head rotations produced by the VCR, thus preventing the ratio of head counterrotation to body rotation from exceeding 0.5. The data indicate that the CCR and VCR behave approximately linearly, both individually and in combination. Acting together, the two reflexes assist each other in preventing oscillation of the head on a stationary body.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3