Visually induced adaptive changes in primate saccadic oculomotor control signals

Author:

Optican L. M.,Miles F. A.

Abstract

Saccades are the rapid eye movements used to change visual fixation. Normal saccades end abruptly with very little postsaccadic ocular drift, but acute ocular motor deficits can cause the eyes to drift appreciably after a saccade. Previous studies in both patients and monkeys with peripheral ocular motor deficits have demonstrated that the brain can suppress such postsaccadic drifts. Ocular drift might be suppressed in response to visual and/or proprioceptive feedback of position and/or velocity errors. This study attempts to characterize the adaptive mechanism for suppression of postsaccadic drift. The responses of seven rhesus monkeys were studied to postsaccadic retinal slip induced by horizontal exponential movements of a full-field stimulus. After several hours of saccade-related retinal image slip, the eye movements of the monkeys developed a zero-latency, compensatory postsaccadic ocular drift. This ocular drift was still evident in the dark, although smaller (typically 15% of the amplitude of the antecedent saccade, up to a maximum drift of 8 degrees). Retinal slip alone, without a net displacement of the image, was sufficient to elicit these adaptive changes, and compensation for leftward and rightward saccades was independent. It took several days to complete adaptation, but recovery (in the light) was much quicker. The decay of this adaptation in darkness was very slow; after 3 days the ocular drift was reduced by less than 50%. The time constants of single exponential curve fits to adaptation time courses of data from five animals were 35 h for acquisition, 4 h for recovery, and at least 40 h for decay in darkness. Descriptions of the central innervation for a saccade are usually simplified to only two components: a pulse and a step. It has been hypothesized that suppression of pathological postsaccadic drift is achieved by adjusting the ratio of the pulse to the step of innervation (19, 26). However, we show that the time constant of the ocular drift is influenced by the time constant of the adapting stimulus, which cannot be explained by the simple pulse-step model of saccadic innervation. A more realistic representation of the saccadic innervation has three components: a pulse, an exponential slide, and a step. Normal saccades were accurately simulated by a fourth-order, linear model of the ocular motor plant driven by such a pulse-slide-step combination. Saccades made after prolonged exposure to optically induced retinal image slip could also be simulated by properly adjusting the slide and step components.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3