Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. II. Responses to movement triggering vs. nontriggering sensory signals

Author:

Kurata K.,Tanji J.

Abstract

This report compares neuronal activity in the supplementary motor area (SMA) and the precentral motor cortex (PCM) in response to auditory and vibrotactile signals that required a monkey either to start a key-press movement or to refrain from initiating such a movement. Confirming previous reports (3, 9), a vibrotactile stimulus that triggered movement gave rise to two phases of neuronal activity in PCM neurons: a short-latency response time-locked to the occurrence of the vibrotactile stimulus, and a response related to the time of onset of the movement. When the animal was required to refrain from moving in response to the vibrotactile signal, the short-latency response was often attenuated and there was rarely any later activity. There was no attenuation of the short-latency response to the nontriggering vibrotactile stimulus in the anterior part of the postcentral somatosensory cortex. As reported previously (23), short-latency stimulus-locked responses of SMA neurons to a vibrotactile signals were less frequent and the magnitude of the responses was smaller than in the PCM. However, the properties of the later-occurring responses of SMA neurons were often different from those of PCM neurons. Many SMA neurons responded to both the triggering and nontriggering vibrotactile signals. Twenty-nine SMA neurons responded to the nontriggering signal only and not to the movement-triggering signal. Most of the PCM neurons were active after the auditory signal only when the signal was a trigger to start the key-press movement; three neurons exhibited a slight activity increase after the nontriggering auditory signal. In contrast, a number of SMA neurons responded to the nontriggering auditory signal as well as the movement-triggering auditory signal. Twenty-three neurons responded exclusively to the nontriggering auditory signal. These results indicate the extent to which SMA neuronal activity, in contrast to that of the PCM, is related to factors other than the execution of movement.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3