Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator

Author:

Getting P. A.,Dekin M. S.

Abstract

Swimming behavior in the marine mollusc Tritonia diomedea is episodic, consisting of a series of alternating dorsal and ventral flexions initiated by a brief sensory stimulus. The swim motor pattern is generated by a network formed of four groups of premotor interneurons: cerebral cell 2 (C2), dorsal swim interneurons (DSIs), and two types of ventral swim interneurons (VSI-A and VSI-B). The initiation and maintenance of swimming depends on the establishment of a long-lasting ramp depolarization in both the premotor, pattern-generating interneurons, and the motor neurons (i.e., flexion neurons). Voltage clamp was used to measure the membrane current responsible for the ramp depolarization. In all cell classes the current had two components: a tonic inward current, which decayed as the swim progressed, and phasic inward current waves, which provided the synaptic drive during each swim burst. The ramp current in the flexion neurons and in C2 was generated largely by activity within the interneuronal pattern-generating network (PGN). The ramp current could be mimicked by driving activity in the pattern-generating interneurons. In VSI-B, the tonic component of the ramp current was independent of activity within the PGN and appeared to be derived from the long-lasting effect of an extrinsic input. The phasic components of the ramp, however, were dependent on PGN activity. The phasic inward current waves were blocked when pattern generation was prevented. In addition, phasic inward currents similar to those occurring during swimming could be produced by driving the C2. The tonic component of the ramp current in a DSI was dependent both on extrinsic inputs and PGN activity. Extrinsic inputs appeared to control the first 10-15 s of the tonic current. At longer times, activity within the DSI population itself maintained the ramp current. When one DSI was driven in a quiescent preparation, all other DSIs were inhibited, yet the DSIs are known to be coupled by monosynaptic, reciprocal excitatory synapses. This effect could be explained by the action of an unidentified inhibitory interneuron (I-neuron), which was excited by DSIs and in turn inhibited all other DSIs. The DSIs were therefore coupled reciprocally by both monosynaptic excitation and polysynaptic inhibition. Activity in C2 switched the DSI-DSI interaction from inhibition to excitation by inhibiting the I-neuron.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3