Regulation of Nicotinic Acetylcholine Receptor Desensitization by Ca2+

Author:

Guo Xiaochuan,Lester Robin A. J.

Abstract

The relationship between the concentration of intracellular Ca2+ ([Ca2+]i) and recovery from desensitization of nicotinic acetylcholine receptors (nAChRs) in rat medial habenula (MHb) neurons was investigated using the whole cell patch-clamp techniques in combination with microfluoresecent [Ca2+]i measurements. Recovery from desensitization was assessed with a paired-pulse agonist application protocol. Application of 100 μM nicotine (5 s) caused pronounced desensitization of nAChRs, after which recovery proceeded with two components. The relative weight of the two phases of recovery was sensitive to the nature of the intracellular Ca2+ chelator, with a greater fraction of channels recovering during the fast phase in the presence of BAPTA than EGTA. Recovery was affected by differential Ca2+ buffering only when Ca2+ was present in the extracellular solution, implying that Ca2+ influx through nAChRs was responsible for slowing the recovery. Simultaneous [Ca2+]i measurements showed that recovery from desensitization was inversely correlated with the instantaneous [Ca2+]i, further supporting the suggestion that elevation of [Ca2+]i limits the return of nAChRs to the resting state. In a separate set of experiments, activation of voltage-gated Ca2+ channels during the recovery phase produced a sufficiently large increase in [Ca2+]i to reduce recovery from desensitization even in the absence of Ca2+ influx through nAChRs. Overall, it is suggested that Ca2+ entry through both nAChRs and voltage-gated Ca2+ channels exerts a negative feedback on nAChR activity through stabilization of desensitized states. The interaction of these two Ca2+ sources could form the basis of a coincidence detector under specific circumstances.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3