Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects

Author:

Rind F. C.1,Simmons P. J.1

Affiliation:

1. Division of Neurobiology, School of Neuroscience, University ofNewcastle upon Tyne, United Kingdom.

Abstract

1. The "descending contralateral movement detector" (DCMD) neuron in the locust has been challenged with a variety of moving stimuli, including scenes from a film (Star Wars), moving disks, and images generated by computer. The neuron responds well to any rapid movement. For a dark object moving along a straight path at a uniform velocity, the DCMD gives the strongest response when the object travels directly toward the eye, and the weakest when the object travels away from the eye. Instead of expressing selectivity for movements of small rather than large objects, the DCMD responds preferentially to approaching objects. 2. The neuron shows a clear selectivity for approach over recession for a variety of sizes and velocities of movement both of real objects and in simulated movements. When a disk that subtends > or = 5 degrees at the eye approaches the eye, there are two peaks in spike rate: one immediately after the start of movement; and a second that builds up during the approach. When a disk recedes from the eye, there is a single peak in response as the movement starts. There is a good correlation between spike rate and angular acceleration of the edges of the image over the eye. 3. When an object approaches from a distance sufficient for it to subtend less than one interommatidial angle at the start of its approach, there is a single peak in response. The DCMD tracks the approach, and, if the object moves at 1 m/s or faster, the spike rate increases throughout the duration of object movement. The size of the response depends on the speed of approach. 4. It is unlikely that the DCMD encodes the time to collision accurately, because the response depends on the size as well as the velocity of an approaching object. 5. Wide-field movements suppress the response to an approaching object. The suppression varies with the temporal frequency of the background pattern. 6. Over a wide range of contrasts of object against background, the DCMD gives a stronger response to approaching than to receding objects. For low contrasts, the selectivity is greater for objects that are darker than the background than for objects that are lighter.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3