Kinetic properties of a transient outward current in rat neocortical neurons

Author:

Andreasen M.1,Hablitz J. J.1

Affiliation:

1. Neurobiology Research Center, University of Alabama, Birmingham35294.

Abstract

1. Whole-cell patch-clamp techniques were used to record outward currents in embryonic rat neocortical neurons maintained in culture. In the presence of tetrodotoxin and cadmium, depolarization evoked an outward current with a complex waveform. This outward current consisted of an initial fast transient component and a late, slowly inactivating component. 2. The two outward current components could be separated pharmacologically with the use of tetraethylammonium (TEA) and 4-aminopyridine (4-AP). TEA (20 mM) applied extracellularly completely blocked the late component, unmasking a fast transient outward current (TOC). 4-AP (5 mM) applied extracellularly blocked the early component while reducing the late component by 27.8 +/- 9.7% (mean +/- SE). 3. The TOC activated after a short delay and rose rapidly to a peak. The time to peak was voltage dependent and decreased with depolarization. In the presence of 200 microM extracellular cadmium, activation threshold was around -25 mV, and current amplitude increased with depolarization. The voltage-conductance relationship was well fitted by the use of the Boltzmann equation with a Vm of +19 mV for half activation and a slope factor of +6 mV. 4. On sustained depolarization the TOC rapidly inactivated and decayed to baseline within 500-600 ms. The decay phase followed a single exponential time course with a time constant of 55-65 ms. The decay time was most rapid at potentials from +5 to +20 mV and increased slightly with further depolarization. 5. Steady-state inactivation of the TOC, in the presence of cadmium, was complete near -10 mV and was totally relieved at potentials more negative than -75 mV. With the use of the Boltzmann equation, a Vm of -34 mV for half inactivation and a slope factor of -8.6 mV were found. 6. Recovery of the TOC from steady-state inactivation followed a single exponential time course and was voltage dependent. When the membrane potential was held at -84 mV during the conditioning pulse, the time constant of recovery was 17 ms, increasing to 45.2 and 58.1 ms at holding potentials of -64 and -44 mV, respectively. Holding at potentials more negative than -84 mV produced no further change in the recovery time course. 7. The presence of 200 microM external cadmium altered the TOC activation and inactivation curves. Removal of cadmium produced a -16-mV shift in the Vm for half activation and a -25-mV shift in the inactivation curve. This sensitivity to cadmium is higher than that reported in other systems.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3