Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses

Author:

Kawano K.1,Shidara M.1,Yamane S.1

Affiliation:

1. Neuroscience Section, Electrotechnical Laboratory, Ibaraki,Japan.

Abstract

1. Movements of the visual scene evoke short-latency ocular following responses. To study the neural mediation of the ocular following responses, we investigated neurons in the dorsolateral pontine nucleus (DLPN) of behaving monkeys. The neurons discharged during brief, sudden movements of a large-field visual stimulus, eliciting ocular following. Most of them (100/112) responded to movements of a large-field visual stimulus with directional selectivity. 2. Response amplitude was measured in two components of the neural response: an initial transient component and a late sustained component. Most direction-selective DLPN neurons showed their strongest responses at high stimulus speeds (80-160 degrees/s), whether their response components were initial (63/87, 72%) or sustained (63/87, 72%). The average firing rates of 87 DLPN neurons increased as a linear function of the logarithm of stimulus speed up to 40 degrees/s for both initial and sustained responses. 3. Not only the magnitude but also the latency of the neural and ocular responses were dependent on stimulus speed. The latencies of both neural and ocular responses were inversely related to the stimulus speed. As a result, the time difference between the response latencies for neural and ocular responses did not vary much with changes of stimulus speed. 4. Response latency was measured when a large-field random dot pattern was moved in the preferred direction and at the preferred speed of each neuron. Seventy-three percent (56/77) of the neurons were activated less than 50 ms after the onset of the stimulus motion. In most cases (67/77, 87%), their increase of firing rate started before the eye movements, and 34% of them (26/77) started greater than 10 ms before the eye movements. 5. Blurring of the random dot pattern by interposing a sheet of ground glass increased the latency of both neural responses and eye movements. On the other hand, the blurred images did not change the timing of the effect of blanking the visual scene on the responses of the neurons or eye movements. 6. When a check pattern was used instead of random dots, both neural and ocular responses began to decrease rapidly when the temporal frequency of the visual stimulus exceeded 20 Hz. When the temporal frequency of the visual stimulus approached 40 Hz, the neurons showed a distinctive burst-and-pause firing pattern. The eye movements recorded at the same time showed signs of oscillation, and their temporal patterns were closely correlated to those of the firing rate.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3