Affiliation:
1. Department of Neurobiology, State University of New York, Stony Brook11794-5230.
Abstract
1. In an anesthetized, paralyzed in vivo preparation, we recorded extracellular responses of 61 geniculate neurons (2 W, 25 X, 33 Y, and 1 mixed) to drifting sine-wave gratings of various spatial frequency, temporal frequency, and contrast. Our goal was to study the differential contributions to these visual responses of bursting caused by voltage dependent, low-threshold (LT) Ca2+ spikes and of purely tonic responses unrelated to LT spikes. Cells responding with LT spikes are said to be in the burst firing mode and those responding in a purely tonic fashion to be in the relay or tonic firing mode. We separated the total visual response into LT burst and tonic components by use of the empirical criteria set forth in our intracellular study described in the previous paper (Lu et al. 1992). A response component was considered to be an LT burst if its action potentials displayed interspike intervals < or = 4 ms and if the first spike in the burst episode occurred after a silent period of > or = 100 ms (or > or = 50 ms when the neuron responds to visual stimuli at temporal rates > or = 8 Hz). All other activity is considered to be part of the tonic response. 2. In addition to LT bursts, we recognized another type of burst response, the high-threshold (HT) burst. These also have clusters of action potentials with interspike intervals < or = 4 ms. However, HT bursts, unlike LT bursts, lack a preburst silent period. HT bursts are part of the tonic response component and merely reflect the gradual decrease in interspike intervals that occurs as the cell becomes more depolarized and thus more responsive. Thus interspike interval is a necessary but insufficient criterion to identify LT bursts. 3. Visually evoked LT bursts were recorded among W, X, and Y cells. When evoked, LT bursts occurred in phase with drifting sine-wave grating stimuli at a rate never exceeding one per stimulus cycle. In response to individual cycles of the visual stimulus, LT bursts could comprise the total response, a tonic component could comprise the total response, or an LT burst and tonic component could be mixed. When a stimulus evoked a mixture of LT bursts and tonic response components, LT bursts were always the first response. 4. Of the 61 cells tested with grating stimuli, 47 exhibited LT bursts and 14 did not. Those that did exhibited varying amounts of burstiness.(ABSTRACT TRUNCATED AT 400 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience