Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance

Author:

Staley K. J.1,Mody I.1

Affiliation:

1. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, California 94305.

Abstract

1. Stimulation of the perforant path in the outer molecular layer of the adult rat dentate gyrus produced a depolarizing post-synaptic potential (DPSP) in granule cells when recorded using whole-cell techniques in the standard hippocampal slice preparation at 34 degrees C. The postsynaptic currents (PSCs) contributing to the DPSP were analyzed using specific receptor antagonists in current- and voltage-clamp recordings. 2. The DPSP reversal potential was dependent on the intracellular chloride concentration, and the amplitude of the DPSP was increased 55% after perfusion of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline methiodide (BMI). The GABAA receptor-mediated PSC reversed at -66 mV, which was 19 mV positive to the resting membrane potential (-85 mV) but hyperpolarized relative to action potential threshold. At -35 mV, the GABAA PSC had a latency to peak of 12.9 ms after the stimulus and decayed monoexponentially with an average time constant of 23.4 ms. 3. The component of the PSC blocked by the Quis/AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) had a latency to peak of 7.1 ms and decayed monoexponentially with a time constant of 9.9 ms at -35 mV. The N-methyl-D-aspartate (NMDA) receptor-mediated PSC, which was blocked by D-amino-5-phosphonovaleric acid (D-AP5), had a waveform that was similar to the GABAA PSC: the latency to peak was 16 ms and the decay was monoexponential with a time constant of 24.5 ms at -35 mV. 4. The ratio of the peak PSCs mediated by GABAA, Quis/AMPA, and NMDA receptors measured at -35 mV with cesium gluconate electrode solutions was 1:0.2:0.1. This ratio was essentially constant over the range of stimulus intensities that produced compound PSC amplitudes of 80-400 pA. 5. Measured at its reversal potential, the GABAA receptor-mediated postsynaptic conductance (GGABA-A) decreased the peak DPSP amplitude by 35%, shunted 50% of the charge transferred to the soma by the excitatory PSC, and completely inhibited the NMDA receptor-mediated component of the DPSP. 6. Simultaneous stimulation of presynaptic fibers from both the perforant path and interneurons results in a large depolarizing GGABA-A that inhibits the granule cell by shunting the excitatory PSCs. As predicted by models of shunting, the similar kinetics of the GABAA and NMDA PSCs leads to particularly effective inhibition of the NMDA PSC. The more rapid Quis/AMPA PSC is less affected by the GGABA-A, so that granule cell excitation under these conditions is primarily due to Quis/AMPA receptor activation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3