A model of the electrophysiological properties of thalamocortical relay neurons

Author:

McCormick D. A.1,Huguenard J. R.1

Affiliation:

1. Section of Neurobiology, Yale University School of Medicine, NewHaven, Connecticut 06510.

Abstract

1. A model of the electrophysiological properties of single thalamocortical relay neurons in the rodent and cat dorsal lateral geniculate nucleus was constructed, based in part on the voltage dependence and kinetics of ionic currents detailed with voltage-clamp techniques. The model made the simplifying assumption of a single uniform compartment and incorporated a fast and transient Na+ current, INa; a persistent, depolarization-activated Na+ current, INap; a low-threshold Ca2+ current, I(T); a high-threshold Ca2+ current, IL; a Ca(2+)-activated K+ current, IC; a transient and depolarization-activated K+ current, IA; a slowly inactivating and depolarization-activated K+ current, IK2; a hyperpolarization-activated cation current, Ih; and K+ and Na+ leak currents IKleak and INaleak. 2. The effects of the various ionic currents on the electrophysiological properties of thalamocortical relay neurons were initially investigated through examining the effect of each current individually on passive membrane responses. The two leak currents, IKleak and INaleak, determined in large part the resting membrane potential and the apparent input resistance of the model neuron. Addition of IA resulted in a delay in the response of the model cell to a depolarizing current pulse, whereas addition of IK2, or IL combined with IC, resulted in a marked and prolonged decrease in the response to depolarization. Addition of Ih resulted in a depolarizing "sag" in response to hyperpolarization, whereas addition of IT resulted in a large rebound Ca2+ spike after hyperpolarization. Finally, addition of INap resulted in enhancement of depolarization. 3. The low-threshold Ca2+ spike of rodent neurons was successfully modeled with the active currents I(T), IL, IA, IC, and IK2. The low-threshold Ca2+ current I(T) generated the low-threshold Ca2+ spike. The transient K+ current IA slowed the rate of rise and reduced the peak amplitude of the low-threshold Ca2+ spike, whereas the slowly inactivating K+ current IK2 contributed greatly to the repolarization of the Ca2+ spike. Activation of IL during the peak of the Ca2+ spike led to activation of IC, which also contributed to the repolarization of the Ca2+ spike. Reduction of any one of the K+ currents resulted in an increase in the other two, thereby resulting in substantially smaller changes in the Ca2+ spike than would be expected on the basis of the amplitude of each ionic current alone.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3