Effect of velocity and mechanical history on the forces of motor units in the cat medial gastrocnemius muscle

Author:

Heckman C. J.1,Weytjens J. L.1,Loeb G. E.1

Affiliation:

1. Laboratory of Neural Control, National Institutes of Health, Bethesda,Maryland 20814.

Abstract

1. Two fundamental aspects of the dynamic behavior of motor units of the cat medial gastrocnemius (MG) muscle were measured. Force-velocity (FV) relationships were measured with the use of constant velocity shortening and lengthening movements. Effects of mechanical history were assessed via comparisons of forces immediately after or during slow movements with standard isometric forces. Isometric force-length (FL) relations were also measured, and the effect of different stimulation rates on both FV and FL data was assessed. 2. Prior or concurrent movement greatly potentiated motor-unit force, but this movement potentiation was highly dependent on the amplitude of the unit's force. The smallest twitch forces of type S units (< 10 mN) were potentiated more than threefold, but no potentiation occurred for unit forces > 200 mN. It was tentatively concluded that movement potentiation may play little role in normal movements because it does not occur at forces > 1% of maximal isometric force of the MG. 3. During shortening, the normalized FV relations of type S units were relatively steeper than those of type FR or FF units. For lengthening, there was no evident relation between FV steepness and motor-unit type. 4. Stimulation rate affected both the FV and FL relationships of the motor units. The peak of the FL relationship (Lo) clearly shifted to shorter muscle lengths as stimulation rate was increased. The steepness of the FV relationship for shortening was decreased by increasing stimulation rate, but this effect was modest. 5. The shift in motor-unit Lo and the differences in motor-unit FV relationships were hypothesized to play significant roles during normal motor behavior. Realistic computer simulations of FL and FV functions for a population of motor units undergoing normal steady-state recruitment and rate modulation supported these hypotheses. As the level of simulated neural drive increased, the population Lo shifted to considerably shorter lengths, and the normalized FV function became much less steep. The significance of these results for models of muscle are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3