Force response of rat soleus muscle to variable-frequency train stimulation

Author:

Binder-Macleod S. A.1,Barrish W. J.1

Affiliation:

1. School of Life and Health Sciences, University of Delaware, Newark19716.

Abstract

1. The purpose of this study was to study the effects of a high-frequency burst of pulses at the onset of a subtetanic train of pulses on the force output of the rat soleus muscle. 2. The soleus muscle was studied in eight rats deeply anesthetized with urethan. The effects of two-, three-, or four-pulse bursts at the onset of subtetanic trains containing a total of 12 pulses were studied in detail. 3. The results showed that two-pulse bursts at the onset of the train produced approximately 20% augmentation in average force and nearly a 50% reduction in the time required to reach a targeted level of force, compared with a comparable 12-pulse subtetanic constant-frequency train; three- or four- pulse bursts produced progressively less additional improvement. In contrast, the two-pulse bursts produced approximately 13% increase in the force-time integral (Area), the three-pulse burst did not significantly further increase the Area gain, and the use of four-pulse bursts markedly decreased the gain in Area. 4. For all three bursts, the observed force augmentation rapidly declined over the 12-pulse trains. Extrapolation beyond the actual data suggested that the force augmentation should last for between approximately 16 and 19 interpulse intervals. 5. To describe the characteristics of the contractile response of the muscle that explains or predicts the amount of force augmentation seen, we made three measurements of the response to the burst of pulses: 1) the peak force produced by the initial burst of pulses (PeakBURST), 2) the force at the time of arrival of the pulse that followed the burst (CatchBURST), and 3) the rise in force produced by the pulse that followed the burst (PotBURST). Of these three measurements, the CatchBURST was the best predictor of the force augmentation seen. 6. The present results showed 1) the importance of the stimulation pattern on the force output of skeletal muscle; 2) that the force-frequency relationship is multivalued, with force depending on both the stimulation history and stimulation frequency; and 3) that a relatively simple discharge strategy, where each train of pulses begins with one or two brief interpulse interval durations, will produce the maximum force from the muscle and result in a predictable force-frequency relationship.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3