Fine structure of the intracochlear potential field. II. Tone-evoked waveforms and cochlear microphonics

Author:

Zidanic M.1,Brownell W. E.1

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, Johns HopkinsUniversity, Baltimore, Maryland 21205-2195.

Abstract

1. Extracellular evoked potentials to low-frequency pure-tone stimuli were recorded in the second cochlear turn of the anesthetized guinea pig. Spatial variations of the field potentials were characterized by advancing and withdrawing micropipettes along radial tracks in scala tympani (ST) and scala vestibuli (SV). Compound action potentials (CAPs) and cochlear microphonics (CM) are the major components of the evoked responses to 50- to 1,600- Hz stimuli. The relative contribution of CM and CAP to the evoked potentials varies with cochlear scala and location within the scala as well as with stimulus frequency and intensity. 2. In the 50- to 800-Hz frequency range, the largest CM in the second turn was recorded from scala media (SM). Below 500 Hz the CM in SV is larger than in ST, whereas above 500 Hz a larger CM is present in ST. The CM in SV is nearly in phase with the CM in SM, although it is smaller by a factor of two to four. The CM diminishes by another factor of two over a 100-microns depth range as an electrode is withdrawn out of SV through the spiral ligament. While the electrode is in SV or in the fluid outside the spiral ligament, the CM magnitude does not change by greater than 10%. The shape of the radial CM magnitude profile along tracks in SV shows little or no dependence on intensity in the 65- to 105-dB SPL range or on frequency in the 50- to 800-Hz range. 3. Unlike the CM profiles in SV, the shape of the CM magnitude and phase profiles in ST are a complex function of frequency and intensity. Below 500 Hz, the CM goes through a 140-180 degree radial phase shift over a 100-microns distance near the spiral ligament bordering ST. Concomitant with the large radial phase shift is a local minimum of the CM magnitude. The location of this "virtual ground point" can shift radially by as much as 100 microns over a 30-dB intensity range. The CM magnitude deep in ST is always larger than the CM outside the spiral ligament bordering ST. However, the ratio of the CM magnitudes at these two locations can vary from 0.1 to 0.8, the ratio tending to increase with intensity in the 200- to 800-Hz range.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3