Effects of ganglionic satellite cells and NGF on the expression of nicotinic acetylcholine currents by rat sensory neurons

Author:

Mandelzys A.1,Cooper E.1

Affiliation:

1. Department of Physiology, McGill University, Montreal, Quebec,Canada.

Abstract

1. We have investigated two factors that affect the expression of nicotinic acetylcholine (ACh) currents on neonatal rat sensory neurons: an influence derived from ganglionic satellite cells, and nerve growth factor (NGF). 2. With the use of whole-cell patch-clamp techniques on rat nodose neurons, we have measured the proportion of neurons sensitive to ACh and have quantified their ACh current densities. The majority (60%) of nodose neurons from neonatal animals do not express nicotinic acetylcholine receptors (nAChRs); the remaining 40% had ACh current densities that ranged from 0.4 to 93 pA/pF. Furthermore, neither the proportion nor the ACh current densities change over the first two postnatal weeks in vivo. 3. The expression of ACh currents by these neurons in vivo is controlled, in part, by an influence from the ganglionic satellite cells: culturing neurons in the absence of other cell types results in an increase in the proportion of ACh-sensitive neurons, whereas coculturing neurons with their satellite cells maintains functional nAChR expression in its in vivo state. Furthermore, satellite cells are not required continually, as a brief exposure to this influence, either in vivo or in culture, is sufficient to exert its effect on functional nAChR expression. 4. On removal of this satellite cell influence, the neurons respond to NGF treatment by increasing their ACh current densities: the median ACh current density for neurons grown for 2-3 wk with NGF was 32.5 pA/pF, whereas, the median ACh current density for neurons cultured without NGF for the same time was 4.5 pA/pF.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3