Effective synaptic current can be estimated from measurements of neuronal discharge

Author:

Powers R. K.1,Robinson F. R.1,Konodi M. A.1,Binder M. D.1

Affiliation:

1. Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195.

Abstract

1. The basic question of how motoneurons transform synaptic inputs into spike train outputs remains unresolved, despite detailed knowledge of their morphology, electrophysiology, and synaptic connectivity. We have approached this problem by making measurements of a synaptic input under steady-state conditions and combining them with quantitative assessments of their effects on the discharge rates of cat spinal motoneurons. 2. We used a modified voltage-clamp technique to measure the steady-state effective synaptic currents (IN) produced by rubrospinal input to cat triceps surae motoneurons. In the same motoneurons we measured the slope of the firing rate-injected current (f-i) relation in the primary range. We then reactivated the rubrospinal input during steady, repetitive firing to assess its effect on motoneuron discharge rate. 3. We found that changes in the steady-state discharge rate of a motoneuron produced by this synaptic input could be described simply as the product of the net effective synaptic current measured at the soma and the slope of the motoneuron's f-i relation. This expression essentially redefines synaptic efficacy in terms of a cell's basic input-output function. Further, measurements of effective synaptic current simplify the task of estimating synaptic efficacy, because detailed knowledge of neither the electrotonic architecture of the postsynaptic cell nor of the locations of the presynaptic boutons is required.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3