Expression of motor learning in the response of the primate vestibuloocular reflex pathway to electrical stimulation

Author:

Broussard D. M.1,Bronte-Stewart H. M.1,Lisberger S. G.1

Affiliation:

1. Department of Physiology, W. M. Keck Foundation Center for IntegrativeNeuroscience, San Francisco, California 94143.

Abstract

1. The vestibuloocular reflex (VOR) undergoes long-term adaptive changes in the presence of persistent retinal image motion during head turns. Previous experiments using natural stimuli have provided evidence that the VOR is subserved by parallel pathways, including some that are modified during learning and some that are not. We have used electrical stimulation of the vestibular labyrinth to investigate the temporal properties of the signals that are transmitted through the modified pathways. 2. Electrodes were implanted chronically in the superior semi-circular canal, the horizontal canal, or the vestibule for electrical activation of the vestibular afferents. Learning was induced by fitting the monkeys with spectacles that magnified or miniaturized vision. Before, during, and after motor learning, we measured the eye movements evoked by electrical stimulation of the labyrinth as well as the gain of the VOR, defined as eye speed divided by head speed during natural vestibular stimulation in the dark. 3. Trains of pulses applied to the labyrinth caused the eyes to move away from the side of stimulation with an initial rapid change in eye velocity followed by a steady-state plateau. Changes in the gain of the VOR caused large changes in the trajectory and magnitude of eye velocity during the plateau, showing that our stimulating electrodes had access to the modified pathways. 4. A single, brief current pulse applied to the labyrinth evoked an eye movement that had a latency of 5 ms and consisted of a pulse of eye velocity away from the side of the stimulation followed by a rebound toward the side of stimulation. To quantify the effect of motor learning on these eye movements, we pooled the data across different VOR gains and computed the slope of the relationship between eye velocity and VOR gain at each millisecond after the stimulus. We refer to the slope as the "modification index." 5. In comparison with the evoked eye velocity, the modification index took longer to return to baseline and showed a large peak at the time of the rebound in eye velocity. Increases in stimulus current increased both the amplitude and the duration of the modification index and revealed several later peaks. These observations suggest that the full expression of motor learning requires activation of multisynaptic pathways and recruitment of primary vestibular afferents with higher thresholds for electrical stimulation. 6. The modification index was almost always positive during the initial deflection in eye velocity, and the latency of the first change in the modification index was usually the same as the latency of the evoked eye movement.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3