Stabilization of gaze during circular locomotion in light. I. Compensatory head and eye nystagmus in the running monkey

Author:

Solomon D.1,Cohen B.1

Affiliation:

1. Department of Neurology, Mount Sinai School of Medicine, CityUniversity of New York, New York 10029.

Abstract

1. A rhesus and cynomolgus monkey were trained to run around the perimeter of a circular platform in light. We call this "circular locomotion" because forward motion had an angular component. Head and body velocity in space were recorded with angular rate sensors and eye movements with electrooculography (EOG). From these measurements we derived signals related to the angular velocity of the eyes in the head (Eh), of the head on the body (Hb), of gaze on the body (Gb), of the body in space (Bs), of gaze in space (Gs), and of the gain of gaze (Gb/Bs). 2. The monkeys had continuous compensatory nystagmus of the head and eyes while running, which stabilized Gs during the slow phases. The eyes established and maintained compensatory gaze velocities at the beginning and end of the slow phases. The head contributed to gaze velocity during the middle of the slow phases. Slow phase Gb was as high as 250 degrees/s, and targets were fixed for gaze angles as large as 90-140 degrees. 3. Properties of the visual surround affected both the gain and strategy of gaze compensation in the one monkey tested. Gains of Eh ranged from 0.3 to 1.1 during compensatory gaze nystagmus. Gains of Hb varied around 0.3 (0.2-0.7), building to a maximum as Eh dropped while running past sectors of interest. Consistent with predictions, gaze gains varied from below to above unity, when translational and angular body movements with regard to the target were in opposite or the same directions, respectively. 4. Gaze moved in saccadic shifts in the direction of running during quick phases. Most head quick phases were small, and at times the head only paused during an eye quick phase. Eye quick phases were larger, ranging up to 60 degrees. This is larger than quick phases during passive rotation or saccades made with the head fixed. 5. These data indicate that head and eye nystagmus are natural phenomena that support gaze compensation during locomotion. Despite differential utilization of the head and eyes in various conditions, Gb compensated for Bs. There are various frames of reference in which an estimate of angular velocity that drives the head and eyes could be based. We infer that body in space velocity (Bs) is likely to be represented centrally to provide this signal.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3