Effect of changing feedback delay on spontaneous oscillations in smooth pursuit eye movements of monkeys

Author:

Goldreich D.1,Krauzlis R. J.1,Lisberger S. G.1

Affiliation:

1. Department of Physiology, W. M. Keck Foundation Center for IntegrativeNeuroscience, University of California, San Francisco 94143.

Abstract

1. Our goal was to discriminate between two classes of models for pursuit eye movements. The monkey's pursuit system and both classes of model exhibit oscillations around target velocity during tracking of ramp target motion. However, the mechanisms that determine the frequency of oscillations differ in the two classes of model. In "internal feedback" models, oscillations are controlled by internal feedback loops, and the frequency of oscillation does not depend strongly on the delay in visual feedback. In "image motion" models, oscillations are controlled by visual feedback, and the frequency of oscillation does depend on the delay in visual feedback. 2. We measured the frequency of oscillation during pursuit of ramp target motion as a function of the total delay for visual feedback. For the shortest feedback delays of approximately 70 ms, the frequency of oscillation was between 6 and 7 Hz. Increases in feedback delay caused decreases in the frequency of oscillation. The effect of increasing feedback delay was similar, whether the increases were produced naturally by dimming and decreasing the size of the tracking target or artificially with the computer. We conclude that the oscillations in eye velocity during pursuit of ramp target motion are controlled by visual inputs, as suggested by the image motion class of models. 3. Previous experiments had suggested that the visuomotor pathways for pursuit are unable to respond well to frequencies as high as the 6-7 Hz at which eye velocity oscillates in monkeys. We therefore tested the response to target vibration at an amplitude of +/- 8 degrees/s and frequencies as high as 15 Hz. For target vibration at 6 Hz, the gain of pursuit, defined as the amplitude of eye velocity divided by the amplitude of target velocity, was as high as 0.65. We conclude that the visuomotor pathways for pursuit are capable of processing image motion at high temporal frequencies. 4. The gain of pursuit was much larger when the target vibrated around a constant speed of 15 degrees/s than when it vibrated around a stationary position. This suggests that the pursuit pathways contain a switch that must be closed to allow the visuomotor pathways for pursuit to operate at their full gain. The switch apparently remains open for target vibration around a stationary position. 5. The responses to target vibration revealed a frequency at which eye velocity lagged target velocity by 180 degrees and at which one monkey showed a local peak in the gain of pursuit.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3