Plasticity of rat motoneuron rhythmic firing properties with varying levels of afferent and descending inputs

Author:

MacDonell C. W.1,Button D. C.2,Beaumont E.3,Cormery B.4,Gardiner P. F.15

Affiliation:

1. Spinal Cord Research Centre, Department of Physiology and

2. School of Human Kinetics and Recreation, Memorial University, St. John's, Newfoundland; and

3. Département de chirurgie, Université de Montréal, Montreal, Quebec, Canada; and

4. Departement d'Éducation Physique, Universite de Pau et des Pays de l'Adour, Pau, France

5. Health Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba;

Abstract

Hindlimb motoneuron excitability was compared among exercise-trained (E), sedentary (S), and spinal cord transected (T) Sprague-Dawley rats by examining the slope of the frequency-current (F/I) relationship with standard intracellular recording techniques in rats anesthetized with ketamine-xylazine. The T group included spinal transected and spinal isolated rats; the E animals were either spontaneously active (exercise wheel) or treadmill trained; and rats in the S group were housed in pairs. An analysis of motoneuron initial [1st interspike interval (ISI)], early (mean of 1st three ISIs), and steady-state (mean of last 3 ISIs) discharge rate slopes resulting from increasing and decreasing 500-ms injected square-wave depolarizing current pulses was used to describe rhythmic motoneuron properties. The steepest slope occurred in the S group (55.3 ± 22.2 Hz/nA), followed by the T group (35.5 ± 15.3 Hz/nA), while the flattest slope was found in the E group (25.4 ± 10.9 Hz/nA). The steepest steady-state slope occurred in the S group but was found to be similar between the T and E groups. Furthermore, a spike-frequency adaptation (SFA) index revealed a slower adaptation in motoneurons of the E animals only (∼40% lower). Finally, evidence for a secondary range of firing existed more frequently in the T group (41%) compared with the S (12%) and E (31%) groups. The lower F/I slope and lower SFA index of motoneurons for E rats may be a result of an increase in Na+ conductance at the initial segment. The results show that motoneuronal rhythmic firing behavior is plastic, depending on the volume of daily activation and on intact descending pathways.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3