Bicuculline-Induced Chorea Manifests in Focal Rather Than Globalized Abnormalities in the Activation of the External and Internal Globus Pallidus

Author:

Bronfeld Maya1,Belelovsky Katya1,Erez Yaara1,Bugaysen Jenia2,Korngreen Alon12,Bar-Gad Izhar12

Affiliation:

1. The Leslie and Susan Gonda Multidisciplinary Brain Research Center and

2. The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel

Abstract

Chorea is a basal-ganglia (BG) related hyperkinetic movement disorder characterized by irregular continuous involuntary movements. Chorea and related hyperbehavioral disorders may be induced in behaving primates by local microinjections of the GABAA antagonist bicuculline to the globus pallidus externus (GPe). We performed multielectrode extracellular recordings in the GPe and in the globus pallidus internus (GPi) before, during, and after bicuculline microinjections. Bicuculline led to an increase in the firing rate and a change in the firing pattern of GPe neurons. Two types of abnormal neuronal firing patterns were detected in GPe neurons close to the bicuculline microinjection site: continuous high-frequency activity and bistable activity, in which neurons transitioned between high-frequency and complete cessation of firing. Neuronal activity remained uncorrelated within and between the GPe and the GPi, with no evidence for propagation of the focal GPe abnormal activity downstream to the GPi. Despite reduction in the information capacity of bicuculline-affected GPe neurons, the ability to encode behavioral events was maintained. We found similar responses of GPe neurons to bicuculline in vitro in the rat, suggesting a basic cellular mechanism underlying these abnormal firing patterns. These results demonstrate that chorea is associated with focal neuronal changes that are not complemented by global changes in the BG nuclei. This suggests a mechanism of stochastic phasic alteration of BG control leading to the chaotic nature of chorea. Thus rather than imposing a globalized state of cortical excitability, chorea might be associated with changes in internal information processing within the BG.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3