Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men

Author:

van Wijck Kim12,Pennings Bart13,van Bijnen Annemarie A.3,Senden Joan M. G.3,Buurman Wim A.12,Dejong Cornelis H. C.12,van Loon Luc J. C.13,Lenaerts Kaatje12

Affiliation:

1. Top Institute Food and Nutrition, Wageningen, the Netherlands;

2. Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands; and

3. Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands

Abstract

Previously, we demonstrated that exercise can cause small intestinal injury, leading to loss of gut barrier function. The functional consequences of such exercise-induced intestinal injury on subsequent food digestion and absorption are unclear. The present study determined the impact of resistance-type exercise on small intestinal integrity and in vivo dietary protein digestion and absorption kinetics. Twenty-four young males ingested 20 g specifically produced intrinsically l-[1-13C]phenylalanine-labeled protein at rest or after performing a single bout of resistance-type exercise. Continuous intravenous infusions with l-[ring-2H5]phenylalanine were employed, and blood samples were collected regularly to assess in vivo protein digestion and absorption kinetics and to quantify plasma levels of intestinal fatty-acid binding protein (I-FABP) as a measure of small intestinal injury. Plasma I-FABP levels were increased after exercise by 35%, reaching peak values of 344 ± 53 pg/ml compared with baseline 254 ± 31 pg/ml ( P < 0.05). In resting conditions, I-FABP levels remained unchanged. Dietary protein digestion and absorption rates were reduced during postexercise recovery when compared with resting conditions ( P < 0.001), with average peak exogenous phenylalanine appearance rates of 0.18 ± 0.04 vs. 0.23 ± 0.03 mmol phenylalanine·kg lean body mass−1·min−1, respectively. Plasma I-FABP levels correlated with in vivo rates of dietary protein digestion and absorption ( r S = −0.57, P < 0.01). Resistance-type exercise induces small intestinal injury in healthy, young men, causing impairments in dietary protein digestion and absorption kinetics during the acute postexercise recovery phase. To the best of our knowledge, this is first evidence that shows that exercise attenuates dietary protein digestion and absorption kinetics during acute postexercise recovery.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3