Growing in Antarctica, a challenge for white adipose tissue development in Adélie penguin chicks (Pygoscelis adeliae)

Author:

Raccurt Mireille,Baudimont Fannie,Tirard Julien,Rey Benjamin,Moureaux Elodie,Géloën Alain,Duchamp Claude

Abstract

Rapid growth is of crucial importance for Adélie penguin chicks reared during the short Antarctic summer. It partly depends on the rapid ontogenesis of fat stores that are virtually null at hatching but then develop considerably (×40) within a month to constitute both an isolative layer against cold and an energy store to fuel thermogenic and growth processes. The present study was aimed at identifying by RT-PCR the major transcriptional events that chronologically underlie the morphological transformation of adipocyte precursors into mature adipocytes from hatching to 30 days of age. The peak expression of GATA binding protein 3, a marker of preadipocytes, at day 7 posthatch indicates a key proliferation step, possibly in relation to the expression of C/EBPα (C/EBPα). High plasma total 3,5,3′-triiodo-l-thyronine (T3) levels and high levels of growth hormone receptor transcripts at hatching suggested that growth hormone and T3play early activating roles to favor proliferation of preadipocyte precursors. Differentiation and growth of preadipocytes may occur around day 15 in connection with increased abundance of transcripts encoding IGF-1, proliferator-activated receptor-γ, and C/EBPβ, gradually leading to functional maturation of metabolic features of adipocytes including lipid uptake and storage (lipoprotein lipase, fatty-acid synthase) and late endocrine functions (adiponectin) by day 30. Present results show a close correlation between adipose tissue development and chick biology and a difference in the scheduled expression of regulatory factors controlling adipogenesis compared with in vitro studies using cell lines emphasizing the importance of in vivo approaches.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3