Gas exchange kinetics in obese adolescents. Inferences on exercise tolerance and prescription

Author:

Salvadego Desy1,Lazzer Stefano1,Busti Carlo2,Galli Raffaela2,Agosti Fiorenza2,Lafortuna Claudio3,Sartorio Alessandro2,Grassi Bruno1

Affiliation:

1. Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy;

2. Italian Institute for Auxology, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, Verbania and Milano, Italy; and

3. Institute of Bioimaging and Molecular Physiology, CNR, Milano, Italy

Abstract

A functional evaluation of skeletal muscle oxidative metabolism was performed in a group of obese adolescents (OB). The various components of pulmonary O2 uptake (V̇o2) kinetics were evaluated during 10-min constant-load exercises (CLE) on a cycloergometer at different percentages of V̇o2max. The relationships of these components with the gas exchange threshold (GET) were determined. Fourteen male OB [age 16.5 ± 1.0 (SD) yr, body mass index 34.5 ± 3.1 kg·m−2] and 13 normal-weight, age-matched nonathletic male volunteers (control group) were studied. The time-constant (τf) of the fundamental component and the presence, pattern, and relative amplitude of the slow component of V̇o2 kinetics were determined at 40, 60, and 80% of V̇o2max, previously estimated during an incremental test. V̇o2max (l/min) was similar in the two groups. GET was lower in OB (55.7 ± 6.7% of V̇o2max) than in control (65.1 ± 5.2%) groups. The τf was higher in OB subjects, indicating a slower fundamental component. At CLE 60% (above GET in OB subjects, below GET in control subjects) a slow component was observed in nine out of fourteen OB subjects, but none in the control group. All subjects developed a slow component at CLE 80% (above GET in both OB and control). Twelve OB subjects did not complete the 10-min CLE 80% due to voluntary exhaustion. In nine OB subjects, the slow component was characterized by a linear increase in V̇o2 as a function of time. The slope of this increase was inversely related to the time to exhaustion. The above findings should negatively affect exercise tolerance in obese adolescents and suggest an impairment of skeletal muscle oxidative metabolism. Also in obese adolescents, exercise evaluation and prescription at submaximal loads should be done with respect to GET and not at a given percentage of V̇o2max.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3