Electrophysiological properties of the L-type Ca2+current in cardiomyocytes from bluefin tuna and Pacific mackerel

Author:

Shiels H. A.,Blank J. M.,Farrell A. P.,Block B. A.

Abstract

Tunas are capable of exceptionally high maximum metabolic rates; such capability requires rapid delivery of oxygen and metabolic substrate to the tissues. This requirement is met, in part, by exceptionally high maximum cardiac outputs, opening the possibility that myocardial Ca2+delivery is enhanced in myocytes from tuna compared with those from other fish. In this study, we investigated the electrophysiological properties of the cardiac L-type Ca2+channel current ( ICa) to test the hypothesis that Ca2+influx would be larger and have faster kinetics in cardiomyocytes from Pacific bluefin tuna ( Thunnus orientalis) than in those from its sister taxon, the Pacific mackerel ( Scomber japonicus). In accordance with this hypothesis, ICain atrial myocytes from bluefin tuna had significantly greater peak current amplitudes and faster fast inactivation kinetics (-4.4 ± 0.2 pA/pF and 25.9 ± 1.6 ms, respectively) than those from mackerel (-2.7 ± 0.5 pA/pF and 32.3 ± 3.8 ms, respectively). Steady-state activation, inactivation, and recovery from inactivation were also faster in atrial myocytes from tuna than from mackerel. In ventricular myocytes, current amplitude and activation and inactivation rates were similar in both species but elevated compared with those of other teleosts (Vornanen M. Am J Physiol Regul Integr Comp Physiol 272: R1432-R1440, 1997). These results indicate enhanced ICain atrial myocytes from bluefin tuna compared with Pacific mackerel; this enhanced ICamay be associated with elevated cardiac performance, because ICadelivers the majority of Ca2+involved in excitation-contraction coupling in most fish hearts. Similarly, ICais enhanced in the ventricle of both species compared with other teleosts and may play a role in the robust cardiac performance of fishes of the family Scombridae.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3