Author:
Avella Martine,Ducoudret Olivier,Pisani Didier F.,Poujeol Philippe
Abstract
We have investigated volume-activated taurine transport and ultrastructural swelling response of sea bass gill cells in culture, assuming that euryhaline fish may have developed particularly efficient mechanisms of salinity adaptation. In vivo, when sea basses were progressively transferred from seawater to freshwater, we noticed a decrease in blood osmotic pressure. When gill cells in culture were subjected to 30% hypotonic shock, we observed a five-fold stimulation of [3H]taurine efflux. This transport was reduced by various anion channel inhibitors with the following efficiency: 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) > niflumic acid > DIDS = diphenylamine-2-carboxylic acid. With polarized gill cells in culture, the hypotonic shock produced a five-fold stimulation of apical taurine transport, whereas basolateral exit was 25 times higher. Experiments using ionomycin, thapsigargin, BAPTA-AM, or removal of extracellular calcium suggested that taurine transport was regulated by external calcium. The inhibitory effects of lanthanum and streptomycin support Ca2+entry through mechanosensitive Ca2+channels. Branchial cells also showed hypotonically activated anionic currents sensitive to DIDS and NPPB. Similar pharmacology and time course suggested the potential existence of a common pathway for osmosensitive taurine and Cl−efflux through volume-sensitive organic osmolyte and anion channels. A three-dimensional structure study revealed that respiratory gill cells began to swell only 15 s after hypoosmotic shock. Apical microridges showed membrane outfoldings: the cell surface became smoother with a progressive disappearance of ridges. Therefore, osmotic swelling may not actually induce membrane stretch per se, inasmuch as the microridges may provide a reserve of surface area. This work demonstrates mechanisms of functional and morphological plasticity of branchial cells during osmotic stress.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献