Glucose does not activate nonadrenergic, noncholinergic inhibitory neurons in the rat stomach

Author:

Shi Min,Jones Allison R.,Ferreira Manuel,Sahibzada Niaz,Gillis Richard A.,Verbalis Joseph G.

Abstract

We reported previously that intravenously administered d-glucose acts in the central nervous system to inhibit gastric motility induced by hypoglycemia in anesthetized rats. The purpose of this study was to determine whether this effect is due to inhibition of dorsal motor nucleus of the vagus (DMV) cholinergic motoneurons, which synapse with postganglionic cholinergic neurons, or to excitation of DMV cholinergic neurons, which synapse with postganglionic nonadrenergic, noncholinergic (NANC) neurons, particularly nitrergic neurons. Three approaches were employed: 1) assessment of the efficacy of d-glucose-induced inhibition of gastric motility in hypoglycemic rats with and without inhibition of nitric oxide synthase [10 mg/kg iv nitro-l-arginine methyl ester (l-NAME)], 2) assessment of the efficacy of intravenous bethanechol (30 μg·kg−1·min−1) to stimulate gastric motility in hypoglycemic rats during the time of d-glucose-induced inhibition of gastric motility, and 3) determination of c-Fos expression in DMV neurons after intravenous d-glucose was administered to normoglycemic rats. Results obtained demonstrated that l-NAME treatment had no effect on d-glucose-induced inhibition of gastric motility; there was no reduction in the efficacy of intravenous bethanechol to increase gastric motility, and c-Fos expression was not induced by d-glucose in DMV neurons that project to the stomach. These findings indicate that excitation of DMV cholinergic motoneurons that synapse with postganglionic NANC neurons is not a significant contributing component of d-glucose-induced inhibition of gastric motility.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3