Noninvasive assessment of vascular structure and function in conscious rats based on in vivo imaging of the albino iris

Author:

Stauss Harald M.1,Rarick Kevin R.1,Leick Katie M.1,Burkle Jason W.1,Rotella Diane L.1,Anderson Michael G.23

Affiliation:

1. Departments of 1Health and Human Physiology,

2. Molecular Physiology and Biophysics, and

3. Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa

Abstract

Experimental techniques allowing longitudinal studies of vascular disease progression or treatment effects are not readily available for most animal models. Thus, most existing studies are destined to either study individual time points or use large cohorts of animals. Here we describe a noninvasive technique for studying vascular disease that is based on in vivo imaging of the long posterior ciliary artery (LPCA) in the iris of albino rats. Using a slit-lamp biomicroscope, images of the LPCA were taken weekly in conscious normotensive Wistar Kyoto rats (WKY, n = 10) and spontaneously hypertensive rats (SHR, n = 10) for 10 wk. Using imaging software, we found that lumen diameter was significantly smaller and the wall-to-lumen (W/L) ratio larger in SHR than in WKY. Wall thickness was not different. Blood pressure correlated with the W/L ratio. Histology of the abdominal aorta also revealed a smaller lumen diameter and greater W/L ratio in SHR compared with WKY. Corneal application of the muscarinic receptor agonist pilocarpine elicited a dose-dependent vasodilation of the LPCA that could be antagonized by inhibition of nitric oxide synthase, suggesting that the pilocarpine response is mainly mediated by endothelium-derived nitric oxide. Consistent with endothelial dysfunction in SHR, pilocarpine-induced vasodilation was greater in WKY rats than in SHR. These findings indicate that in vivo imaging of the LPCA allows assessment of several structural and functional vascular parameters in conscious rats and that the LPCA responds to disease insults and pharmacologic treatments in a fashion that will make it a useful model for further studies.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3