Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I

Author:

Lang Charles H.,Huber Danuta,Frost Robert A.

Abstract

The present study determined whether thermal injury increases the expression of the ubiquitin (Ub) E3 ligases referred to as muscle ring finger (MuRF)-1 and muscle atrophy F-box (MAFbx; aka atrogin-1), which are muscle specific and responsible for the increased protein breakdown observed in other catabolic conditions. After 48 h of burn injury (40% total body surface area full-thickness scald burn) gastrocnemius weight was reduced, and this change was associated with an increased mRNA abundance for atrogin-1 and MuRF-1 (3.1- to 8-fold, respectively). Similarly, burn increased polyUb mRNA content in the gastrocnemius twofold. In contrast, there was no burn-induced atrophy of the soleus and no significant change in atrogin-1, MuRF-1, or polyUb mRNA. Burns also did not alter E3 ligase expression in heart. Four hours after administration of the anabolic agent insulin-like growth factor (IGF)-I to burned rats, the mRNA content of atrogin-1 and polyUb in gastrocnemius had returned to control values and the elevation in MuRF-1 was reduced 50%. In contrast, leucine did not alter E3 ligase expression. In a separate study, in vivo administration of the proteasome inhibitor Velcade prevented burn-induced loss of muscle mass determined at 48 h. Finally, administration of the glucocorticoid receptor antagonist RU-486 did not prevent burn-induced atrophy of the gastrocnemius or the associated elevation in atrogin-1, MuRF-1, or polyUb. In summary, the acute muscle wasting accompanying thermal injury is associated with a glucocorticoid-independent increase in the expression of several Ub E3 ligases that can be downregulated by IGF-I.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3