Neural and metabolic mechanisms of excessive muscle fatigue in maintenance hemodialysis patients

Author:

Johansen Kirsten L.,Doyle Julie,Sakkas Giorgos K.,Kent-Braun Jane A.

Abstract

Dialysis patients have severe exercise limitations related to metabolic disturbances, but muscle fatigue has not been well studied in this population. We investigated the magnitude and mechanisms of fatigue of the ankle dorsiflexor muscles in patients on maintenance hemodialysis. Thirty-three dialysis patients and twelve healthy control subjects performed incremental isometric dorsiflexion exercise, beginning at 10% of their maximal voluntary contraction (MVC) and increasing by 10% every 2 min. Muscle fatigue (fall of MVC), completeness of voluntary activation, and metabolic responses to exercise were measured. Before exercise, dialysis subjects exhibited reduced strength and impaired peripheral activation (lower compound muscle activation potential amplitude) but no metabolic perturbation. During exercise, dialysis subjects demonstrated threefold greater fatigue than controls with evidence of central activation failure but no change in peripheral activation. All metabolic parameters were significantly more perturbed at end exercise in dialysis subjects than in controls, including lower phosphocreatine (PCr) and pH, and higher Pi, Pi/PCr, and H2PO4. Oxidative potential was markedly lower in patients than in controls [62.5 (SD 27.2) vs. 134.6 (SD 31.7), P < 0.0001]. Muscle fatigue was negatively correlated with oxidative potential among dialysis subjects ( r = −0.52, P = 0.04) but not controls. Changes in central activation ratio were also correlated with muscle fatigue in the dialysis subjects ( r = 0.59, P = 0.001) but not the controls. This study provides new information regarding the excessive muscular fatigue of dialysis patients and demonstrates that the mechanisms of this fatigue include both intramuscular energy metabolism and central activation failure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3